

Internal Technical Report GMRT/SERVO/PC104/005-DEC-2011

# Study and Analysis of Servo Elevation Axis Software and Hardware Limit hit Problem

### ADITI BHATT

### THIYAGARAJAN BEEMAN

Under the Guidance of

#### Shri SHAILENDRA K BAGDE

Giant Metrewave Radio Telescope Tata Institute of Fundamental Research Khodad – 410504

# Contents

| List | of Figures                                     | 3  |
|------|------------------------------------------------|----|
| List | of Tables                                      | 3  |
| 1.   | Introduction                                   | 4  |
| 2.   | Description                                    | 4  |
| 3.   | EL Axis State Machine and Operational Commands | 4  |
| 4.   | Data Analysis and Plots                        | 9  |
| 5.   | Conclusion                                     | 18 |

# List of Figures

| Figure 3-1 Simplified EL Axis State Machine | 5  |
|---------------------------------------------|----|
| Figure 3-2 Tracking Trajectory Calculation  | 8  |
| Figure 4-1 Plot1                            | 13 |
| Figure 4-2 Plot 2                           | 15 |
| Figure 4-3 Step Response near limit region  | 16 |
| Figure 4-4 Step Response for 30 antennas    | 17 |

# List of Tables

Table 3-1 Operational Commands and State Transitions6

#### 1. Introduction

For a parabolic structure, 45m GMRT antennas are more prone to mechanical damages than other small antennas, due to their huge structure. The size of GMRT antennas restricts the complete motion of the antenna in both axes in the view of antenna safety. But, this issue becomes more dangerous in elevation axis when the antenna is moving towards ground, as there is a probability that the antenna may hit the ground under certain condition.

To protect 45m GMRT antennas from such damages, three limits have been set for both axes of all the antennas. The elevation limits are,

| • Software Limit (Online) 17.00 | degrees |
|---------------------------------|---------|
|---------------------------------|---------|

- Servo Pre Limit (Soft Limit) 16.50 degrees
- Hardware Limit 15.50 degrees (varies with antenna)

But, due to certain reasons like system dynamics, wind etc. the antenna may hit one of these limits. GMRT online computer system has been designed in such a way that any of these conditions is detected and a call sheet is generated for that antenna immediately.

A similar kind of problem was observed on 9<sup>th</sup> Dec 2011 and 13 Dec 2011, with antennas W02, E04 respectively, during which software and hardware limits were hit. In order to analyze the problem, a series of experiments were conducted on antenna W02 in the month of Dec 2011, trying to simulate those conditions and understand the fault. This document describes the set of experiments performed and the results obtained.

#### 2. Description

The main aim of the experiments conducted, was to simulate the conditions which led to limit hit on 9th Dec 2011 W02, E04, and on 13th Dec 2011 on W06. Another part of experiment included tests to find the overshoot of all the antennas. This comprised of a test on W02 and E04 using HHT at the antenna base and tracking all antennas from various position in elevation near software limit. After this, a set of experiments were conducted on 29 Dec 2011 using PC104 servo computer at antenna base to detect the possible fault in the existing communication link between SSC and ABC. The plots for various tests are included in data analysis.

### 3. EL Axis State Machine and Operational Commands

#### 3.1 Simplified EL Axis State Machine

State machine is a model, which defines the different stages of a machine and its possible transitions (set of possible inputs and expected outputs) between those stages in a machine. Each stage of a state machine is unique.

Figure 3.1 shows the simplified state machine for GMRT antenna elevation axis. The various states for the state machines are the user commands (discussed in next chapter). While, the state transitions depend on the operational interlocks, operational commands from the host computer (i.e. ABC) and timeouts from the various software timers. Table 1 gives different combination of operational commands which changes the machine states.



Figure 3-1 Simplified EL Axis State Machine

| <u>rans</u> | ITIONS | <u>COMMANDS LIST / EVENTS</u> |                                      |
|-------------|--------|-------------------------------|--------------------------------------|
|             | T1     | :                             | HOLD   POSN   COLDSTART              |
|             | T2     | :                             | CLOSE   STOP   PROCESS FAULTS        |
|             | Т3     | :                             | TRACK                                |
|             | T4     | :                             | ABORT   HOLD                         |
|             | Т5     | :                             | LIMIT RELEASING                      |
|             | Т6     | :                             | ABORT   TIMER EXPIRY   PROCESS FAULT |
|             | Т7     | :                             | HOLD & LIMIT ACTIVE                  |
|             | Т8     | :                             | STOP   PROCESS FAULT                 |
|             | Т9     | :                             | CLOSE   STOW                         |
|             | T10    | :                             | STOW RLS   COLD START                |
|             |        |                               |                                      |

Table 3-1 Operational Commands and State Transitions

### 3.2 Operational Commands

When the antenna is under the control of SSC (Station Servo Computer), i.e. during local and remote mode, it implements all interlocks in the software. It uses encoder feedback information to control the closed loop position.

In *Manual mode*, control commands are given from console mounted position POTs thus, allowing user (individual at the antenna base) the facility of controlled operation, while in *Remote mode*, all the commands are given from ABC through the serial link neglecting all manual mode commands. Description of local and remote mode commands are given below,

### 3.2.1 Hold Command

During HOLD command, SSC holds the axis at current position with position loop active. The sequence of operations on receiving the HOLD command from host is,

- 1. Checks to see that no disabling conditions exist in that particular axis.
- 2. Turns the drives ON and releases brakes.
- 3. Wait on a timer (AXIS ON DELAY) to check that drive is ready and releases the brakes.
- On time-out it aborts the HOLD Command, otherwise enables position loop controller with, *demand\_target\_angle = current\_angle.*
- 5. Updates the final state of antenna to POSITIONING and continues to correct against actual angle variation due to wind and other disturbances. On detection of any conditions such as over-

current, over-speed or high wind velocity axis is turned off, brakes are applied and POSITIONING state is exited.

6. By issuing STOP command (i.e. de-energizing the amplifiers and applying brakes) it goes back to STRLSDBKD state.

#### 3.2.2 Position Command

On receiving position command, the SSC moves the antenna to commanded position and holds it there. The following sequences of operations are performed on receiving the POSITION command for specific axis from host,

- 1. Checks to see that no disabling conditions exist in that particular axis.
- 2. The demand angle is valid (i.e. not in limit region).
- 3. If antenna state is STRLSDBKD then it turns the drives ON and releases brakes. Then, it waits on a timer (AXIS ON DELAY) to check that drive is ready and brakes are released. Finally it updates the antenna state to POSITIONING.
- 4. If antenna state is POSITIONING, then it loads the target angle and activate the position loop compensator.
- 5. Position loop controller fed with an error (i.e. position error = target angle current angle).
- 6. Position loop compensator output increases until current angle reaches target angle (i.e. position error is 0.0 deg).
- 7. SSC continuously monitors the axis disabling conditions during positioning and takes necessary action. As earlier, STOP command aborts POSITIONING state and brings to STRLSDBKD.

#### 3.2.3 Track Command

SSC is capable of driving the antenna to follow a trajectory of angle vs. time co-ordinates. The desired trajectory is fed as target angle and target time. For this command SSC calculates intermediate angles for every 100msec time step and calculates error from this.

The host computer (i.e. ABC) provides desired trajectory information at every 30sec interval. A single element queue is maintained by the SSC so that the ABC can give a new pair of co-ordinates in advance. These new co-ordinates will be picked up by the SSC from the queue on reaching the previously established target time.

The following steps are performed by the SSC to drive the antenna in the specified trajectory –

- 1. Previous state of antenna is checked, as it should be POSITIONING for track commands.
- 2. Validity checks are performed on the target\_angle and target\_time. SSC puts no restrictions to target\_angle but for target\_time, it should be two hours later than the current time.
- 3. After validation SSC calculates the intermediate demand positions as follows,

*delta\_position* = sample\_time \*  $\frac{target_angle - current_angle}{target_time - current_time}$ 

4. This Delta\_position added to current\_angle for every 100msec and position error is generated accordingly.

- 5. Then, the position loop compensator generates the speed demand accordingly and sends it to next stage. The following figure.2 shows the intermediate demand positions for every 100msec.
- 6. At the end of target\_time it takes new command from the track queue and processes it.
- 7. While processing the track command.
  - a) If HOLD/ABORT command comes from host it will discards the currently running track command and clears track queue, and enters into POSITIONING state.
  - b) If STOP command comes from host it discards the currently running track command and clears track queue, and enters into STRLSDBKD state.



Figure 3-2 Tracking Trajectory Calculation

#### 3.2.4Abort Command

ABORT command is accepted by SSC only when the antenna is either in POSITIONING state or TRACKING state, upon receiving the ABORT command from host, SSC performs the following operations to go back to stand by with position loop enabled.

- 1. If antenna state is POSITIONING servo program clears the target\_angle and updates the current\_angle as a target\_angle and it computes the safe stop angle from the current velocity of antenna and maximum acceleration of specific axis and generates the final stop position.
- 2. If antenna is in TRACKING state, servo program discards the currently running track and updates the current\_angle as a target\_angle, as well as it clears the track queue. Then, servo computes the safe stop angle from the current velocity of antenna and maximum acceleration of specific axis and generates the safe stop angle.

The following motions equation is used to calculate the safe stop position

$$v^2 = u^2 + 2as$$

Where,

 $v = final \ velocity \ (d/s)$  $u = initial \ velocity \ (d/s)$  $a = axis \ accleration \ (d/s^2)$  $s = position \ displacement \ (d)$ 

In our case final velocity should be zero, by sub-suiting v = 0 in above equation,

position\_displacement (s)=
$$\frac{u^2}{2a}$$
 3.1

This position displacement can be added to current angle to generate target position to stop the axis, depends on the direction of antenna motion, the sign of the position displacement will change,

safe\_stop\_position = current\_position + position\_displacement (s) 3.2

#### 4. Data Analysis and Plots

The following experiments were conducted on W02 antenna on 28-Dec-2011 and 29-Dec-2011 using PC104 with its data logging feature for different servo parameters like encoder angles, motor currents, speeds etc. along with the servo communication mail box for host commands.

The tests done on 20-Dec-2011 and 22-Dec-2011 included moving all antennas from 20 deg, 40 deg and 70 deg to 17 deg from CEB. The data for all available 22 antennas were plotted and are depicted in data analysis. Also, antennas W02 and E04 were moved in elevation from different positions (ranging from 40 degrees to 19 degrees) to 17 degrees using HHT at the antenna base. These tests were conducted to see the variation of overshoot near the software limit. The corresponding plots are shown in appendix.

During the experiments on 28-Dec-2011 and 29-Dec-2011, W02 antenna was made to track the sources, which were close to limit region in EL axis, by giving the repetitive SETABCT command from online we simulated the servo software limit hit condition. Tests were done to see the effect of command SETABCT on target\_position of antenna.

Also, the antenna was moved from 20°,19° and 18° to 17° in both track and position mode to check for limit hitting. Various plots and command logs are shown in the succeeding figures.

### 4.1 Analysis during tracking with repetitive SETABCT

The following listing gives comparison between PC104 commands from ABC and Online Commands,

#### PC104 Command Log:

| Dec              | 2917:12:12B,B,+220:14:34,+017:00:00 |                        |                                    |  |  |
|------------------|-------------------------------------|------------------------|------------------------------------|--|--|
| <mark>Dec</mark> | 291                                 | <mark>.7:12:13P</mark> |                                    |  |  |
| <mark>Dec</mark> | 29                                  | 17:13:13               | <mark>R,17:12:15,29-12-2011</mark> |  |  |
| Dec              | 29                                  | 17:12:15               | D,B,17:12:29,+220:12:23,+017:00:00 |  |  |
| Dec              | 29                                  | 17:12:16               | D,B,17:12:59,+220:13:56,+017:00:00 |  |  |
| Dec              | 29                                  | 17:12:28               | \$0 1\$1 1                         |  |  |
| Dec              | 29                                  | 17:12:37               | D,B,17:13:29,+220:15:30,+017:00:00 |  |  |
| <mark>Dec</mark> | 29                                  | 17:12:53               | P                                  |  |  |
| Dec              | 29                                  | 17:12:53               | R,17:12:53,29-12-2011              |  |  |
| Dec              | 29                                  | 17:12:53               | D,B,17:12:59,+220:13:56,+017:00:00 |  |  |
| Dec2             | 9                                   | 17:12:54               | D,B,17:13:29,+220:15:30,+017:00:00 |  |  |
| Dec2             | 9                                   | 17:12:58               | \$0 1\$1 1                         |  |  |
| Dec2             | 9                                   | 17:13:01               | P                                  |  |  |
| Dec2             | 9                                   | 17:13:03               | R,17:13:03,29-12-2011              |  |  |
| Dec29            |                                     | 17:13:03               | D,B,17:13:29,+220:15:30,+017:00:00 |  |  |
| Dec2             | 9                                   | 17:13:04               | Р                                  |  |  |
| Dec2             | 9                                   | 17:13:04               | R,17:13:04,29-12-2011              |  |  |
| Dec29            |                                     | 17:13:04               | D,B,17:13:59,+220:17:10,+017:00:00 |  |  |
| Dec2             | 9                                   | 17:13:04               | D,B,17:13:29,+220:15:30,+017:00:00 |  |  |
| Dec2             | 9                                   | 17:13:06               | D,B,17:13:59,+220:17:10,+017:00:00 |  |  |
| Dec2             | 9                                   | 17:13:06               | Р                                  |  |  |
| Dec2             | 9                                   | 17:13:06               | R,17:13:06,29-12-2011              |  |  |
| Dec2             | 9                                   | 17:13:06               | D,B,17:13:29,+220:15:30,+017:00:00 |  |  |
| Dec2             | 9                                   | 17:13:07               | Р                                  |  |  |
| Dec2             | 9                                   | 17:13:09               | R,17:13:09,29-12-2011              |  |  |
| Dec2             | 9                                   | 17:13:09               | D,B,17:13:59,+220:17:10,+017:00:00 |  |  |
| Dec29            |                                     | 17:13:10               | D,B,17:13:29,+220:15:30,+017:00:00 |  |  |
| Dec29            |                                     | 17:13:11               | D,B,17:13:59,+220:17:10,+017:00:00 |  |  |
|                  |                                     |                        |                                    |  |  |

D – Track Command, \$0 1,\$1 1 expiry of az el track cmd

P – ABORT Command, B – Both Axis,

R-Set TOD command, B – POSITION command

#### **Online Command Log:**

17:12:13 subac3.5:subac3

| 17:12:13 subac3.5: LOAD NEW SRC SPECIFIC TRAK PARA |
|----------------------------------------------------|
| 17:12:15 user3.5: ABC SET TIME17:12:15,29-12-2011  |
| 17:12:42 subac3.5: subac3                          |
| 17:12:53 user3.5: ABC SET TIME17:12:53,29-12-2011  |
| 17:13: 3 user3.5: ABC SET TIME17:13:03,29-12-2011  |
| 17:13: 4 user3.5: ABC SET TIME17:13:04,29-12-2011  |
| 17:13: 7 user3.5: ABC SET TIME17:13:06,29-12-2011  |
| 17:13: 9 user3.5: ABC SET TIME17:13:09,29-12-2011  |

From the above two listings following conclusion are made

- 1. From PC104 command log at 17:12:12 shows antenna to be positioned at +220:14:34 in azimuth and 17:00:00 in elevation so servo executing the position command.
- But at instant 17:12:13 "NEW SRC SPECIFIC TRAK PARA" are loaded from online and SETABCT was issued with time of 17:12:15,29-12-2011. Similarly online sent SETABCT to ABC at following instants,

17:12:53 user3.5: ABC SET TIME17:12:53,29-12-2011 17:13: 3 user3.5: ABC SET TIME17:13:03,29-12-2011 17:13: 4 user3.5: ABC SET TIME17:13:04,29-12-2011 17:13: 7 user3.5: ABC SET TIME17:13:06,29-12-2011 17:13: 9 user3.5: ABC SET TIME17:13:09,29-12-2011

3. Whenever SETABCT issued from control room ABC sends two commands to servo (ABRT &

SET TOD**)**.

Let us consider the instant 17:12:15,

Dec 29 17:12:13 P (ABORT COMMAND) Dec 29 17:13:13 R,17:12:15,29-12-2011 (SET Time of Day command to servo)

This is happened at all above mentioned SETABCT time instants, these are listed below

Dec 29 17:12:53 P De 29 17:12:53 R,17:12:53,29-12-2011 . . . Dec 29 17:13:01 P Dec 29 17:13:03 R,17:13:03,29-12-2011 . . Dec 29 17:13:04 P Dec 29 17:13:04 R,17:13:04,29-12-2011 . . Dec 29 17:13:06 P Dec 29 17:13:06 R,17:13:06,29-12-2011 . Dec 29 17:13:07 P Dec 29 17:13:09 R,17:13:09,29-12-2011

4. Whenever ABRT (P) command was came from ABC servo discards the currently running command and trying to HOLD the antenna at that angle. (It is difficult to HOLD the axis at that particular instant after receiving the ABRT because the dynamics of antenna will lead antennato oscillate, to avoid this we are calculating the safe stop position).

**Case 1:**This can be explained with help of servo data log file and command log file, Consider the instant 17:13:01 sequence of commands from ABC is,

```
Dec 29 17:12:54 D,B,17:13:29,+220:15:30,+017:00:00 (TRACK)
Dec 29 17:12:58 $0 1$1 1 (TRACK Complete)
Dec 29 17:13:01 P ( ABRT)
Dec 29 17:13:03 R,17:13:03,29-12-2011
Dec 29 17:13:03 D,B,17:13:29,+220:15:30,+017:00:00 (TRACK)
```

#### Data Log:

| S No               | Time                  | Current                  | Softstart                | Target                   | Position                 |
|--------------------|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 5.110              | Time                  | Position                 | Position                 | Position                 | Error                    |
| 10868              | 17:13:01              | 17.67700195              | 16.70963097              | 17.35718918              | -0.99483681              |
| 10869              | 17:13:01              | 17.64678955              | 16.68983078              | 17.35589790              | -0.98717117              |
| 10870              | 17:13:01              | 17.61932373              | 16.67063141              | 17.35460854              | -0.97615814              |
| 10871              | 17:13:01              | 17.59185791              | 16.65203094              | 17.35331917              | -0.96729279              |
| 10872              | 17:13:01              | 17.56164551              | 16.63403130              | 17.35202980              | -0.95782661              |
| 10873              | 17:13:01              | 17.53143311              | 16.61663055              | 17.35074043              | -0.94501495              |
| 10874              | 17:13:02              | 17.50122070              | 16.59983063              | 17.34945107              | -0.93160248              |
| 10875              | 17:13:02              | 17.47100830              | 16.58363152              | 17.34816170              | -0.91758919              |
| 10876              | 17:13:02              | 17.44079590              | 16.56803131              | 17.34687233              | -0.90297699              |
| <mark>10877</mark> | <mark>17:13:02</mark> | <mark>17.41333008</mark> | <mark>16.56803131</mark> | <mark>17.25329590</mark> | <mark>-0.90297699</mark> |
| 10878              | 17:13:02              | 17.38311768              | 16.55303192              | 17.25329590              | -0.86029816              |
| 10879              | 17:13:02              | 17.35565186              | 16.53863144              | 17.25329590              | -0.84448624              |
| 10880              | 17:13:02              | 17.32818604              | 16.52363205              | 17.25329590              | -0.83201981              |
| 10881              | 17:13:02              | 17.30072021              | 16.50923157              | 17.25329590              | -0.81895447              |
| 10882              | 17:13:02              | 17.27050781              | 16.49543190              | 17.25329590              | -0.80528831              |
| 10883              | 17:13:02              | 17.24304199              | 16.48223114              | 17.25329590              | -0.78827667              |
| 10884              | 17:13:03              | 17.21557617              | 16.46963120              | 17.25329590              | -0.77341080              |
| 10885              | 17:13:03              | 17.19085693              | 16.45763206              | 17.25329590              | -0.75794411              |
| 10886              | 17:13:03              | 17.16339111              | 16.44623184              | 17.25329590              | -0.74462509              |
| 10887              | 17:13:03              | 17.13867188              | 16.43543243              | 17.25329590              | -0.72795868              |
| 10888              | 17:13:03              | 17.11395264              | 16.43543243              | 17.25329590              | -0.72795868              |
| 10889              | 17:13:04              | 17.08648682              | 16.42523193              | 17.25232124              | -0.68872070              |
| 10890              | 17:13:04              | 17.06176758              | 16.41563225              | 17.25134659              | -0.67085457              |
| 10891              | 17:13:04              | 17.03430176              | 16.40663147              | 17.25037384              | -0.65513611              |

From the log file before receiving the ABRT (P) command from ABC, servo is executing the track command of B, 17:13:29, +220:15:30, +017:00:00. This track should complete at 17:13:29,

But at the instant of 17:13:02 servo got ABRT command at that instant following sequence of operations are happening in servo,

i. Assign the current\_angle as a target\_angle

- ii. Estimate the soft stop angle using equ 3.1
- iii. Calculate the find stop position from equ 3.2
- iv. Assign final stop position as a target\_angle (in this case 17.25329590).

Target angle remains 17.25329590 from line no.10877 to 10888





Once safe stop target reached antenna enter into POSITIONING mode and process the next command in the command box.

#### Case: 2

Consider the instant 17:13:06 servo received the ABRT command from ABC prior to this instant servo executing the track command of D,B,17:13:29,+220:15:30,+017:00:00.

Dec 29 17:13:04 D,B,17:13:29,+220:15:30,+017:00:00 Dec 29 17:13:06 D,B,17:13:59,+220:17:10,+017:00:00 Dec 29 17:13:06 P Dec 29 17:13:06 R,17:13:06,29-12-2011 Dec 29 17:13:06 D,B,17:13:29,+220:15:30,+017:00:00

| Data lo | og: |
|---------|-----|
|---------|-----|

| S No  | Time     | Current     | Softstart   | Target      | Position    |
|-------|----------|-------------|-------------|-------------|-------------|
| 3.110 | Time     | Position    | Position    | Position    | Error       |
| 10904 | 17:13:05 | 16.74865723 | 16.33643341 | 16.97554588 | -0.43144989 |
| 10905 | 17:13:05 | 16.72943115 | 16.33343315 | 16.97559166 | -0.41522408 |
| 10906 | 17:13:05 | 16.71020508 | 16.33103371 | 16.97563553 | -0.39839745 |
| 10907 | 17:13:05 | 16.69097900 | 16.33103371 | 16.97563553 | -0.39839745 |
| 10908 | 17:13:05 | 16.67175293 | 16.32923317 | 16.97567940 | -0.36174583 |
| 10909 | 17:13:05 | 16.65252686 | 16.32803345 | 16.97572517 | -0.34371948 |
| 10910 | 17:13:05 | 16.63604736 | 16.32743263 | 16.97576904 | -0.32509422 |
| 10911 | 17:13:05 | 16.61956787 | 16.32743263 | 16.97581291 | -0.30861473 |
| 10912 | 17:13:05 | 16.60308838 | 16.32803345 | 16.97585869 | -0.29153442 |
| 10913 | 17:13:05 | 16.58935547 | 16.32923317 | 16.97590256 | -0.27385521 |
| 10914 | 17:13:06 | 16.57287598 | 16.33103371 | 16.97594833 | -0.25832176 |
| 10915 | 17:13:06 | 16.55639648 | 16.33343315 | 16.97599220 | -0.23944283 |
| 10916 | 17:13:06 | 16.54266357 | 16.33643341 | 16.97603607 | -0.21996307 |
| 10917 | 17:13:06 | 16.52893066 | 16.34003258 | 16.97608185 | -0.20263100 |
| 10918 | 17:13:06 | 16.51519775 | 16.34003258 | 16.97608185 | -0.20263100 |
| 10919 | 17:13:06 | 16.50146484 | 16.34423256 | 16.97612572 | -0.17096519 |
| 10920 | 17:13:06 | 16.49047852 | 16.34903336 | 16.97616959 | -0.15243149 |
|       |          |             |             |             |             |
| 10921 | 17:13:06 | 16.47949219 | 16.49047852 | 16.49047852 | -0.15243149 |
| 10922 | 17:13:06 | 16.47125244 | 16.49047852 | 16.47949219 | -0.15243149 |
| 10923 | 17:13:06 | 16.46575928 | 16.49047852 | 16.47949219 | 0.01922607  |
| 10924 | 17:13:07 | 16.46026611 | 16.49047852 | 16.47949219 | 0.02471924  |
| 10925 | 17:13:07 | 16.45751953 | 16.48987770 | 16.47949219 | 0.02961159  |
| 10926 | 17:13:07 | 16.45751953 | 16.48900604 | 16.47949219 | 0.03148651  |
| 10927 | 17:13:07 | 16.45751953 | 16.48799706 | 16.47949219 | 0.03047752  |
| 10928 | 17:13:07 | 16.45477295 | 16.48799706 | 16.47949219 | 0.03047752  |

The below fig. 4-2 shows plot for the above data,



From the plot from 10905 to 10920 antenna was tracking towards the target, at 10920ABRT command to be executed but 10920 current\_angle (16.49047852) is less than the down soft limit (16.5), so antenna controller initiates the axis\_off functions and waits for the drives disabled and applied brakes feedback. During axis\_off time delay () antenna in POSITIONING state and takes the ABRT command and calculate safe stop target from the current\_angle.

Current Angle at ABRT to execute = 16.49047852

Estimated soft stop angle = 16.47949219

With this antenna moves towards target and once axis\_off delay was over antenna controller puts the system into STRLSDBKD state.

#### 4.1 Analysis during Positioning

There is chance of soft limits getting hit of the EL axis by giving the 1° to 3° step command close to the limit region. The following plot shows the step command of 3° from 20 ° to 17° given because of current position goes below the soft limit (16.5) antenna controller initiates the axis\_off function by assigning the target to current angle i.e.(new target = 16.49047852) and disables the amplifiers and applies the brakes. Finally antenna controller enters into STRLSDBKD state.



#### Error Vs Time plot for 20 deg to 17 deg: Elevation Axis for all antennas 3.5 C03 C04 3 C09 C02 C01 C00 2.5 W01 C14 C10 2 W02 W04 Error(deg) W05 1.5 E02 E03 C05 1 E04 E05 E06 0.5 C08 S01 S02 S06 0 -0.5 L 0 20 40 60 100 140 160 80 120 Time

## 4.1 Step response of all antennas from $20^{\circ}$ to $17^{\circ}$ command from CEB

Figure 4-4 Step Response for 30 antennas

#### 5. Conclusion

Based on the experiment conducted in W02, E04 and all 30 antennas, the following conclusions are arrived,

In EL axis, when antenna in tracking, servo target angle goes below the servo software limits, because of repetitive SETABCT command received from the ABC. The reason for generating target angle below the software limit is to safely stop the antenna with gradual decrease in speed. In order to avoid these software limit crossing problems the following suggestions are given by Servo Group Members and SMEC Committee,

- a. For 8086 and PC104 based SSC antennas control room telescope operators are instructed not to issue SETABCT command near limit region in EL axis.
- b. In PC104 servo software this problem can be addressed by implementing the following, condition, target angle is less than safe stop angle, assign software low limit as target angle.

# Appendix

Percentages overshoot Vs difference in angle for antenna W02 as tracking with HHT Performed on 22 Dec 2011



Figure A-1 Plot Percentage Overshoot vs Angle Difference

Percentage overshoot Vs difference in angle for antenna W02 as tracking with HHT performed on 20 Dec 2011



Figure A-2 Plot Percentage Overshoot vs Angle Difference